
www.embedded-world.eu

Requirements in the Flow

Strategy for Keeping Specifications Alive with Enterprise Architect

Jon Kowal
DSPECIALISTS

Digitale Audio und Messsysteme GmbH
Berlin, Germany

jon.kowal@dspecialists.de

Abstract—Proper requirements management is a crucial suc-
cess factor for product development, especially in the long run.
This paper focuses on solving some of the practical issues of
requirements management, demonstrating how Sparx Systems’
Enterprise Architect and its extension facilities may be used in a
model based approach to master the task of maintaining usable
specification documents throughout the entire product lifecycle.
On top of the benefits gained from a model based approach, the
quick and repeated production of documents, which are well
readable by all stakeholders, is highlighted as a key ingredient to
successful requirements management.

Keywords—Requirements Management; UML; Enterprise
Architect

I. INTRODUCTION
Requirements management has been a well researched top-

ic for many years, if not decades, but practical experience
shows that it is still a problem to be solved in many projects,
teams and enterprises.

By now most people understand that requirements man-
agement is not a one-time act of requirements definition but
rather the ongoing process of managing requirement changes
which keeps affecting the product development and requires
good integration into all phases of the product lifecycle. Many
projects fail to keep that process running which results in out-
dated specification which is quickly not much more worth than
having no specification at all.

After providing an understanding of requirements specifica-
tion some key challenges to requirements management will be
attacked in this paper through an integrated approach to re-
quirements and design specification using Sparx System’s
Enterprise Architect as a platform to create model based speci-
fication documents.

Many tools exist to support the integration of requirements
management and system design and some may even be more
suited than Enterprise Architect. That said, it is beyond the

scope of this paper to start a discussion on the pros and cons of
different tools or praise Enterprise Architect as the ultimate
solution. It is a platform, able to support the approach present-
ed herein, not more and not less.

II. DEFINITIONS

A. Requirements Specification
A requirements specification is a set of written require-

ments which describe the functional and nonfunctional aspects
of a system or system component.

A requirements specification is often requested as an input
document to a specific design phase in the development pro-
cess of the system to be described.

Requirements are usually the result of a requirements anal-
ysis in a specific phase of the underlying development model
which defines the scope of the specified requirements.

Example: A system requirements specification is used to
describe a system at large and may be followed by an architec-
tural phase which defines components as well as requirements
specifications targeted at the components. Some components
may require software to be implemented which will need a
software requirements specification, and so on.

Thus, depending on the abstraction levels of the system de-
sign, multiple requirements specifications with different scope
may result from an iterative specification process, which are
linked by design decisions made in the intermediate architec-
tural design phases.

B. Design Specification
“Design is the general arrangement of the different parts of

something that is made, such as a building, book, machine,
etc.” [1]

The design specification is the document or set of docu-
ments or artifacts which describe the design of a system and the
decisions it’s based on.

Despite not strictly considered part of the requirements def-
inition phase, design may lead to new requirements to be de-
fined for (a) the system components which are a result of the
design process—as described above—and (b) the system itself,
as a lack of proper requirements definition is often noticed
within the design phase.

It is necessary to recognize the role of the design specifica-
tion as part of the requirements management process as will be
continually emphasized throughout this paper.

III. REQUIREMENTS MANAGEMENT CHALLENGES

A. Overview
There are certainly more challenges to requirements man-

agement than this paper will be able to discuss. This section
therefor focuses on a few aspects which have been identified
by the author as critical and difficult to master in combination:

 Traceability

 Change Management

 Keeping it simple for Editors

 Keeping it simple for Non-Editors

 Involving Third Parties

B. Traceability
Probably the key challenge to requirements management is

to maintain traceability. The following questions have to be
addressed:

 How has been taken care of each requirement in the de-
sign phase?

 What assumptions or external demand is a requirement
based on, i.e. why does it exist?

 Is a design decision based on requirements or on as-
sumptions made by the designer/developer?

While the first question usually comes to mind when think-
ing about traceability in a top-down development process, the
latter are the ones which hunt developers in later phases of
development or maintenance. They require bottom-up tracea-
bility.

In a perfect product development cycle, every design deci-
sion is explicitly linked to higher level requirements but this
grade of completeness is rarely ever reached. It is simply too
expensive to drag every design decision to a high level re-
quirements definition. Often it is even impossible because
technical circumstances imply certain design patterns which
don’t strictly relate to requirements.

Never the less it is important to know which design deci-
sions are based on requirements and which are not. Especially
when design is to be changed it is crucial to know which parts
of the design may be discarded or modified without affecting
the satisfaction of specific requirements.

C. Change Management
There may be many different kinds of requirements and on-

ly one thing all of them have in common: they are subject to

change. If the change management has not been considered
thoroughly when setting up the requirements management
process it can quickly get overwhelming and costly to handle,
especially with traceability in mind. That often leads to failure
of the entire specification process.

D. Keeping it simple for Editors
Requirements management can only be kept within a rea-

sonable budget if it is easy for editors to add, remove or change
requirements. As part of the change management process this
involves not only the editors of the requirements specification
but also those of the depending design specification.

Managing all dependencies of requirements can get tedious,
so tools should be used to support the work of the editors. That
in turn requires proper training of the editors in using the tools.

E. Keeping it simple for Non-Editors
Non-editors are stakeholders which depend on the specifi-

cation (requirements or design) but don’t intend to edit it. Their
ease-of-use requirements are different from those of the editors
and they may be used to use different tools than the editors—or
no tools at all—to view a specification. Non-editors often don’t
spend nearly as much time with the specification as editors and
they need a way to pull out the needed information without
having to know the specialties of the editing process or tools
involved.

Being also affected by changes to the specification, non-
editors need an easy way to tell changes from one version of
the specification to another and which parts of the specification
are to be approved and which are still under construction.

F. Involving Third Parties
Third parties are non-editors which are only loosely bound

to the developing organization but also require access to the
specification, e.g. customers or external appraisers. They usual-
ly don’t have access to or are familiar with the specific tools
used in the development process.

IV. SOLUTION: MODEL BASED SPECIFICATION DOCUMENTS

A. Model based Specification
As has been pointed out already, requirements management

cannot be done isolated from the design process. That raises
questions on how to keep track of all the dependencies between
requirements and design specification.

To keep it simple for the editor, an easy and robust mecha-
nism to define dependencies is needed. An object based ap-
proach would be ideal where specification objects (require-
ments, design decisions, etc.) can be defined and easily be
associated with each other.

A widely known approach to declare objects and express
their relationships is using the Unified Modeling Language
(UML) and based on it the Systems Modeling Language
(SysML) which is tailored specifically for the use in systems
engineering. Other than UML, SysML allows the definition of
dedicated requirement objects, relationships and diagrams,
which gives it a more native feel when dealing with require-
ments. But on an abstract level simple UML objects are just as
good to fulfill the task.

www.embedded-world.eu

Another benefit of using UML (or SysML1) to model re-
quirements can be the easy integration with a design process
which is often already done in—or at least supported by—
UML. One unified model can be used to define requirements
and the resulting design. This does not even take into account
the benefits which may be drawn from using code generation
or simulation in model driven development.

B. Documents based Specification
A downside to using a model based approach to specifica-

tion is that the specification feels more like a database than a
document.

Experience shows: most people know how to read a docu-
ment, much fewer know their way around a database. Proper
written documents provide a broad scope while guiding the
reader through the theme, implying what should be read first
and what later. Documents are easily exchanged and independ-
ent of specific tools, or at least can be reduced to require a very
common set of tools.

Experience also shows: It is very difficult to generate a
proper written document from a collection of database items
and this is the real dilemma when dealing with model based
specification. While most tools provide some way or another to
generate documents from the model, those documents are not
necessarily useful to anyone. Caught up by the detail of the
entities and relations of the model, editors easily forget to put
them into context. Having defined a rather loose set of model
entities is not sufficient to print an understandable specification
document which serves as a guide to the reader.

To be able to serve all readers which are not inherently fa-
miliar with the model, it is important to organize the model
entities in a way they’d be organized in a document. Textual
descriptions need to be aware of which document and maybe
even which section of the document they are intended to appear
in.

Focusing on documents when editing the model helps to
later generate documents which present themselves to non-
editors like natural written documents. The underlying model
remains hidden in the final documents and is usually not of
interest to non-editors.

C. Quick Iterations
“Release early, release often” is a philosophy known in

software development which makes just as much sense when it
comes to specification. Especially when developing a specifi-
cation in collaboration with one or more third parties, frequent
exchange of the current state of a specification can help tack-
ling misunderstandings before drifting off too far in a wrong
direction.

In traditional documents based specification, quick itera-
tions are difficult to realize as the various dependencies within
large specification documents have to be reviewed and kept up
to date before their release, which is often only done in long
intervals. Model based specification solves that problem, as

1 For the sake of simplicity the following text will stick to using UML as

it is sufficient to express requirement and design dependencies and is more
widely known and implemented in various tools.

dependencies are always at hand and easily updateable or can
at least be marked as outdated.

In a model based specification it is easy to assign further at-
tributes to specification objects to express which parts of the
specification are to be discussed and which are already ap-
proved. This can significantly speed up the handling of large
specification documents.

To support the frequent exchange of specification docu-
ments, those documents have to be generated directly from the
model without any or with only little manual steps involved.
That is a matter of proper tool support.

D. Tool Support
The approach of model based specification documents can-

not be realized efficiently without the help of supporting tools.
The following is required:

 Editor to model requirements and design;

 Document generator to produce deliverable documents
from the model.

[3] contains a long list of UML tools, some of which might
be suited to do the job. This paper will focus on using Sparx
Systems Enterprise Architect, basically because that’s the
UML tool used at DSPECIALISTS, where the author is em-
ployed, and because it provides all facilities needed to realize
the described approach.

V. ENTERPRISE ARCHITECT

A. Overview
Enterprise Architect (EA) is a modeling and design tool by

Sparx Systems based on UML, SysML and other standards. It
supports the specification of requirements and provides special-
ized tools to support requirements traceability.

Next to being a visual UML editor, Enterprise Architect is
also a platform, providing a rich set of modeling tools on one
hand and customization and extension through scripting and
plugins on the other hand. Those customization possibilities are
very useful as they allow us to add missing pieces to the pro-
gram to achieve perfect specification documents.

B. Challenges
Being an open platform suited for any development process

also means, Enterprise Architect is not providing strict guid-
ance for any specific process. Though there are some model
templates for different modeling patterns, they are not really
helpful in our case. It is necessary to define an organizational
strategy and stick to it when editing, in order to be able to col-
laborate without ending up in chaos.

[6] describes in detail how requirements can be specified
and traced in EA as well as the specific support of the require-
ments management processes, including CSV import, review-
ing, auditing, baselines, testing, and much more. Knowledge of
those details is of value when realizing the strategy described
in this paper, but will not be elaborated further as it falls in the
category of training which should be completed by any editor
attempting to use Enterprise Architect for requirements man-
agement.

Beyond [6], the following questions remain and need to be
answered to define a strategy to create model based specifica-
tion documents:

 How to declare/separate different documents within the
model?

 How to include document content that is not strictly part
of the model, such as an introductory chapter?

 How to declare which model content is to appear in the
document?

 How to realize sectioning, numbering and inner docu-
ment references?

 How to realize document versioning?

 How to realize model document dependencies and ex-
ternal references?

The following sections present a specific strategy on docu-
ments modeling in EA which attempts to provide answers to
the questions above.

C. Document based Model Structure
“Packages provide the main generic structuring and

organizing capability of UML. A Package is a namespace for
its members, […]”. [4] The semantics of packages correlate
with those of “sections” in documents or folders in filing.
Therefor, to organize documents in a model, packages can be
used to separate document content sections as well as multiple
documents.

Fig. 1 shows an example screenshot of the EA project
browser, which is used to view and edit the model structure. It
illustrates the definition of multiple documents below the
package “Document Contents”. The screenshot also shows that
it is difficult to tell, which packages are document root nodes

and which are document sections. Stereotypes, tagged values2
or naming conventions may be used to diffentiate the different
package types. Further document declaration will be done in
the Document Directory as described in the following section.

Model elements such as use cases or requirements are
placed within the appropriate section packages. Each element
should be understood as a section or paragraph in the resulting
document. Package names or element names serve as section
headings. Tagged values can be used per element to tell the
document generator if nested elements should appear as nested
sections in the document or if they are to appear flat underneath
each other. Generally, any element specific layouting option
may be specified using tagged values and the document gen-
erator should be configured or extended to recognize those.

Enterprise Architect provides rich text notes fields for all
elements and element dependencies which should be used to
describe the elements as would be done in a textual document.
Hyperlinks in the description can be used to insert references to
other elements which are mentioned in the text or are related.
Those hyperlinks will be resolved as cross referencing
footnotes during document generation as is described in the
section about EA2Latex below.

D. Document Directory
A package “Document Directory”, kept separate from the

specification content, serves as a central place to manage the
model documents as well as externally referenced documents.
EA provides specific model elements for that purpose:

 Model Documents are used to declare virtual documents
based on packages in the model.

 Document Artifacts may be used to create links to ex-
ternal documents.

Both element types are intended to be used by the Rich
Text Format (RTF) documentation generator built into EA, but
they behave just like any other UML element, which allows us
to create dependency connections to express which documents
reference each other as depicted in Fig. 2. Those dependencies
can be used by the document generator to fill in the references
sections of the documents or to textually describe cross docu-
ment references.

The Document Directory is structured with packages which
represent the intended documentation file structure as to be
delivered to the stakeholders. If document generation works
well, the entire document tree can then be generated and pack-
aged, archived, or revisioned on the fly based on the Document
Directory structure.

E. Document Generation
Unfortunately, as of version 12.1, the documentation gener-

ator build into Enterprise Architect is not sufficient to generate
deliverable specification documents in the sense defined above.
There are several configuration options in the RTF generator as

2 “Tagged Values are a convenient way of adding additional information

to an element, beyond what is directly supported by UML.” That definition
used in [7] is deprecated as of UML 1.4, but the intended extensibility of
UML elements may still be achieved using the new understanding of tagged
values as stereotype properties. [8]

Fig. 1 Document Structure in Enterprise Architect Project
Browser

www.embedded-world.eu

of which model contents are to be selected for a specific model
document and how they are to be laid out but the output still
looks too much like data dumped onto a sheet of paper, missing
too many features which are needed for a readable specification
document. Just to name a few:

 Hyperlinks from within element notes are rendered as
such and are useless in printed documents. There is no
readable cross referencing such as “see section x.y”.

 There is no element specific formatting (e.g. based on
tagged values), which we would need to treat complex
objects as numbered sections and simple objects of the
same type as paragraphs. That can lead to an extreme
depth in section numbering, depending on the com-
plexity of the model. Templates can only be customized
based on element types.

 There are no cross document references. Hyperlinks to
elements which are not part of the current document
will just break. Cross document references are extreme-
ly useful to maintain traceability throughout multiple
specification documents.

 To turn an EA generated document into a deliverable
specification document requires too much manual
tweaking afterwards (e.g. formatting, versioning, …),
which defeats our goal of keeping it simple for the edi-
tor and enabling quick document releases.

The document generation feature in EA is more suited to
generate smaller reports, displaying a filtered view on the mod-
el, e.g.: Create a list of all elements with status ‘approved’;
which is also useful but not quite what we are looking for.

At this point the extensibility features of EA come in very
handy. EA provides a plugin API with an easy to use interface
to read and modify the entire model data from a custom pro-
vided plugin binary. There are some documentation plugins
available for EA, already, such as [5], but those did not satisfy

the needs discussed above at the time the issue was brought up
at DSPECIALISTS. So EA2Latex was developed.

VI. EA2LATEX

A. Overview
EA2Latex is a plugin for Enterprise Architect which gener-

ates a TeX document from the UML model. It was created at
DSPECIALISTS specifically to satisfy the in-house needs to
generate deliverable specification documents from UML mod-
els.

EA2Latex uses LaTeX templates to format documents
based on the model element types providing element specific
template parameterization based on tagged values, stereotypes,
and other element attributes. This reduces the plugin itself to
create rather generic TeX code containing all the elements and
their parameters, leaving the specific formatting to the LaTeX
templates, which may differ depending on project or document
type.

EA2Latex supports the entire documentation workflow by
allowing the creation of draft documents from any model pack-
age (i.e. document section), providing integration of subversion
for document management, and including versioning and refer-
encing of specific document revisions. Fig. 3 and Fig. 4 show
two states of the EA2Latex GUI Dialog to illustrate the
workflow.

B. Features
The following is just a short list of the most important

EA2Latex features, without going too much into detail as that
would exceed the scope of this paper:

 Configuration of document properties (e.g. title, file-
name, table of contents depth, etc.) based on Model

Fig. 3 EA2Latex GUI state after document generation,
allowing to open, diff, commit, discard, or regenerate the
document. Green color indicates next plausible steps.

Fig. 2 Document relationships are expressed using standard UML
techniques

Document attributes and tagged values;

 Optional integration of one SVN repository per Docu-
ment Directory;

 Simple but powerful GUI, guiding through the docu-
ment creation process, including document versioning
and tagging;

 Support of inner document references using footnotes
based on hyperlinks in element notes. (e.g. “see section
x.y, Element A, page z”);

 Support of cross document references based on docu-
ment dependencies and hyperlinks in element notes.
(e.g. “see section x.y, Element A, page z, document
B”);

 Support of all EA diagram types and template specific
positioning of diagrams within sections or pages.

 Automatic creation of dependency connections in the
model for elements which are hyperlinking each other
to achieve traceability for hyperlinks;

 Hide certain packages or elements and their children
from the document based on tagged values in the mod-
el;

 Definition of hierarchical or flat section structure on per
element basis (default: hierarchical);

 Use of LaTeX as flexible template engine, including all
of its benefits such as automatic section numbering,
cross referencing, floating figures, tables, indices and
beautiful type setting;

 Server based processing of LaTeX templates to reduce
client side configuration overhead;

 Provide quick links to often used plugin features, e.g.
one context menu entry for Model Document objects to
instantly produce a deliverable PDF document;

 Output of high quality PDF documents, including
hyperlinked cross references—even across multiple
documents—, vector graphics, and table of contents.

VII. CONCLUSION
The presented method of model based specification docu-

ments provides well readable specification documents while
maintaining traceability and easy modifiability in the underly-
ing model. Those are the basic ingredients needed for success-
ful requirements management.

Enterprise Architect proves to support the model based ed-
iting process greatly while leaving the structural organization
of the model to the editor, allowing any individual specification
process. Furthermore it provides the infrastructure to add the
salt needed to fulfill custom needs. With the EA2Latex plugin it
gained the capabilities needed for project specific document
generation and management at DSPECIALISTS.

REFERENCES
[1] Joanna Turnbull , “Oxford Advanced Learner’s Dictionary of Current

English”, Oxford University Press, 2011
[2] Sparx Systems, Enterprise Architect, 2016, Available at:

http://www.sparxsystems.com.au/
[3] Various Authors, “List of Unified Modeling Language tools”, 2016,

http://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
[4] OMG Unified Modeling Language (OMG UML), V2.5, March 2015,

p.239
[5] eaDocX, 2016, available at: http://www.eadocx.com/
[6] Sparx Systems, “Requirements Management with Enterprise Architect”,

2014,
http://www.sparxsystems.com.au/downloads/whitepapers/Requirements
_Management_in_Enterprise_Architect.pdf

[7] Sparx Systems, “Tagged Values”, Enterprise Architect User Guide v12,
http://www.sparxsystems.com/enterprise_architect_user_guide/12/model
ing_basics/thetaggedvaluestab.html

[8] OMG Unified Modeling Language: Infrastructure, V2.0, March 2006,
p.196

Fig. 4 EA2Latex GUI state after SVN commit, allowing to
open or regenerate the document, or tag a new document
version. Green color indicates next plausible steps.

	I. Introduction
	II. Definitions
	A. Requirements Specification
	B. Design Specification

	III. Requirements Management Challenges
	A. Overview
	B. Traceability
	C. Change Management
	D. Keeping it simple for Editors
	E. Keeping it simple for Non-Editors
	F. Involving Third Parties

	IV. Solution: Model Based Specification Documents
	A. Model based Specification
	B. Documents based Specification
	C. Quick Iterations
	D. Tool Support

	V. Enterprise Architect
	A. Overview
	B. Challenges
	C. Document based Model Structure
	D. Document Directory
	E. Document Generation

	VI. EA2Latex
	A. Overview
	B. Features

	VII. Conclusion

